Zero Liquid Discharge for Pharma
Challenges & Solutions
5.02.2013
Green Chemistry

REDUCE

REUSE

RECOVER

RECYCLE

Water & Wastewater Solution
Effluent Composition

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Inorganic Solids</th>
<th>Other Impurities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>Total Hardness</td>
<td>COD</td>
</tr>
<tr>
<td>MDC</td>
<td>Total Alkalinity</td>
<td>BOD</td>
</tr>
<tr>
<td>ACN</td>
<td>Sodium</td>
<td>TOC</td>
</tr>
<tr>
<td>IPA</td>
<td>Chloride</td>
<td>Ammonical Nitrogen</td>
</tr>
<tr>
<td>Toluene</td>
<td>Sulphates</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>Silica</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Heptane</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effluent Segregation

Mother Liquor Streams
- Solvent washing streams
- High COD
- High TDS
- High Hardness
- Ammonical Nitrogen

Lean Stream
- Plant Washing effluent
- Utility waste
- Moderate COD
- Moderate TDS
- Moderate Hardness
Standard Zero Discharge Scheme.

Process Plant

High COD Stream

Stripper

Low Boilers

MEE

ATFD

Dry Product

RO Permeate

Low COD Stream

ETP

UF & RO

RO Reject
Alternate - Zero Discharge Scheme...

High COD Stream

Process Plant

Low Boilers

Stripper

MEE

ATFD

Dry Product

Reuse for Utility

Low COD Stream

Low Boilers

MEE

MEE

RO Reject

RO Permeate

Reuse for Utility

ETP

UF & RO

Dry Product

Reuse for Utility
Key Challenges

- Effluent Segregation
- Inefficient Stripping
- Use of Falling Film Evaporators
- Lesser Capacity Axial Pumps
- High Scaling & Cleaning Frequency
- Worst Scenario Design
- Material Compatibility
- System Integration
Effluent Segregation

• Gaseous streams which are generated intermittently

• Carcinogenic Streams

• Hazardous Streams e.g. Cyanide

• Low TDS & High COD Streams
Inefficient Stripping of Solvents

- Results in high COD in MEE condensate
- Gases like Ammonia increases the Heat exchange area required in MEE, hence need to be take care separately
- High Steam Consumption in MEE
- Reduction in MEE capacity
Using Falling Film

ADVANTAGES:

• Better Heat Transfer Coefficient - Lesser Area - Lower Capex
• Low Power consumption - Lower Opex
• Can be started up quickly and changed to cleaning mode - Low Down time
• Useful in heat sensitive chemical solutions - Lower Residence Time / lower Holdup

LIMITATIONS:

• Not suitable at higher suspended solid concentration and higher viscosity. - Limited Application
• Distribution system is critical and can lead to tube fouling in absence of adequate wetting rate. – Critical operation
• Frequent C.I.P. Required. – requires actual experience to confirm cleaning frequency
Using Lesser capacity Axial Pumps

• Axial Pumps are cheaper than Centrifugal Pumps

• Handles large flow rates but Low Head, hence, 1-2 Tube passes has to be taken

• Can not Manage Pump heads

• Compared with Centrifugal pump, if axial pump flows are less, the calendria tubes will lead to have liquid & Vapor phases resulting into scaling & plugging

• Heavy Maintenance Problems
High scaling & cleaning Frequency of MEEs

- Resulting in frequent cleaning and even Jet cleaning
- Due to Jet cleaning system is to be designed overall 18-20 hrs as against 24 hrs thus resulting in nearly 17% more cap. thus increasing CAPEX
- Frequent cleaning increases effluent volume thus further issues with the MEE to handle increased load
WORST CASE DESIGNS

- TS consideration more - Increase in overall CAPEX & OPEX
- Hydraulic rate more - Frequent shutdowns – More effluent generation – more chemical cost
Solution...

- Selection of Appropriate Technologies
- Integrated Design Approach
- End to End solution
- Optimum Design
Effluent Segregation
Properly designed Strippers
Use of Forced Circulation
Using Centrifugal Pumps
Optimum design of MEE
MOC Selection as per compatibility
System Integration
New Technologies
Flubex – As an alternative to Forced Circulation or in Combination

Flubex- Concept

- Recirculating fluidized bed heat exchanger
- Evaporation by Flashing in Vapor Liquid Separator.
- Fluidizing medium in Tube.
- Self-cleaning action.
Flubex - Advantages

- Continuous self-cleaning action avoid scaling.
- No Frequent C.I.P.
- No standby unit required.
- Lesser floor space.
Photo Chemical Oxidation (Advanced Oxidation)
- Advanced wastewater treatment using photochemical oxidation.
- It destroys/treats non-biodegradable organic contaminants present in wastewater, which are generally represented as “Recalcitrant Chemical oxygen demand”.
- Photochemical oxidation is enhancing the oxidation rate with the help of ultraviolet light in presence of oxidizing chemicals such as hydrogen peroxide, ozone etc.
Typical PCO Plant
Key Features

<table>
<thead>
<tr>
<th>Recommendations for maximum Efficiency</th>
<th>Ideal Conditions for system</th>
<th>Pre-Treatment for the System</th>
</tr>
</thead>
<tbody>
<tr>
<td>• TSS < 50 ppm,</td>
<td>• Presence of solvents.</td>
<td>• Clarification & Filtration</td>
</tr>
<tr>
<td>• O&G < 10 ppm</td>
<td>• Revamping of Biological</td>
<td>• Oil & Grease Removal</td>
</tr>
<tr>
<td>• Turbidity < 5.0 NTU.</td>
<td>system with advanced</td>
<td>• Oxygen Scavenger Removal</td>
</tr>
<tr>
<td>• Scale forming salts are to be</td>
<td>Technology & higher flow</td>
<td></td>
</tr>
<tr>
<td>precipitated in pre-treatment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Oxygen scavengers, if any,</td>
<td>• Substances having toxicity</td>
<td></td>
</tr>
<tr>
<td>are to be eliminated in Pre –</td>
<td>• Where the effluent is</td>
<td></td>
</tr>
<tr>
<td>treatment.</td>
<td>having A Ox</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Where foul smell coming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>out due to biological</td>
<td></td>
</tr>
<tr>
<td></td>
<td>activity cannot be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tolerated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Where secondary sludge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>disposal becomes a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>problem.</td>
<td></td>
</tr>
</tbody>
</table>
Key Features

- Physico-Chemical Process
- Can start & stop whenever effluent is available
- Will treat COD & Toxic chemicals.
- Occupies Lesser floor space
- Capacity augmentation is simple.
- Can handle shock loads.
- No secondary sludge generation.
- Destroy Cyanide and treat Organic Halides
- No limitation for Dissolved solids
Limitations

- Suspended impurities will affect the process efficiency.
- Efficiency will depend upon purity of oxidizing chemicals.
- UV lamps has limited life span.
- Oil & Grease will hamper the process.
Applications of PCO

Typical Treatment Scheme

- Pharma High COD Effluent
- Mixed Solvent Stream
- Solvent Stripper
- Ammonia Stream
- pH Increase
- Stripper
- Process Condensate to ETP
- MEE with ATFD
- AOX
- Incinerator
- Cyanide Stream
Applications of PCO

Pharma High COD Effluent → Mixed Solvent Stream → Solvent Stripper

Ammonia Stream

AOX

Cyanide Stream

Eliminates Ammonia Stripper and Incinerator

Process Condensate to ETP

MEE with ATFD
ABOUT PRAJ
About PRAJ

- Established in 1984
- Technocrat Promoted Group
- 1st Company to avail Venture capital Funding through ICICI
- Listed Company
End-to-End Solutions for

- Ethanol;
- Biodiesel; and
- Beer production
- Energy Crop Agri-Services
- Bio-nutrients for Ethanol industry
- Water and Wastewater Solutions
- Customized Engineering & Manufacturing
Resources - Manufacturing Facilities

Pune Unit - For Domestic Market

Kandla Special Economic Zone: Units 1 & 2
SEZ Unit 2 dedicated to customized equipment manufacturing

- ASME – Sec VIII Div 1 & 2
- AD Merkblatter
- API 650
- TEMA
- BS
- AS 1210
- IS 2825
- DIN
• In-House R&D laboratory unit certification by Department of Scientific and Industrial Research, Government of India
• Spread over an area of 5 acres
• Matrix employs highly qualified scientists, micro and molecular biologists and PhDs
• Praj Matrix has 11 Patents to its credit
• Has filed 3 more patents
If have a will…
We will show you the Way